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The inviscid transonic flow past a thin wing having swept leading edges, with 
smooth lift and thickness distributions, is shown to possess an outer nonlinear 
structure determined principally by a line source and a line doublet. Three 
domains (the thickness-dominated, the intermediate, and the lift-dominated), 
representing different degrees of lift control of the outer flow, are identified; 
a transonic equivalence rule valid in all three domains is established. Except in 
one domain, departure from the Whitcomb-Oswatitsch area rule is significant; 
the equivalent body corresponding to the source effect has an increased cross- 
sectional area depending nonlinearly on the lift. This nonlinear lift contribution 
results from the second-order corrections to the inner (Jones) solution, but pro- 
duces effects of first-order importance in the outer flow. Of interest is an after- 
body effect dependent on the vortex drag, which is not accounted for by the 
classical transonic small-disturbance theory. 

1. Introduction 
The transonic flows of importance in aeronautics are mostly three-dimensional. 

Using modern computers, the problems are amenable to numerical analysis, 
which is however costly and difficult to perform. (See Nieuwland & Spee 1973; 
Hedman & Berndt 1973; Bauer, Garabedian, Korn & Jameson 1974.) This 
paper concerns one special, but rather important, class of three-dimensional 
transonic flows, to which an equivalence rule is applicable. 

The transonic area rule or the equivalence rule of Whitcomb (1952,1956) and 
Oswatitsch (1952) may be stated as follows. At transonic speed, the outer flow 
far from the body is the same as that produced by an (equivalent) body of 
revolution with the same axial distribution of cross-sectional area.? The results 
of Oswatitsch & Keune (1954), based on the slender-body formulation, were 
improved in formalism (Cole & Messiter 1957; Messiter 1957) and in scope 
(Ashley & Landahl 1965). Among the cited works, the most complete is that of 
Ashley & Landahl (1965), in which the restriction to an incidence small com- 
pared with body thicknessisremoved. (Also see Guderley 1962; Ferrari & Tricomi 

The counterparts of this area rule in the linear theories are not considered here. 
Refer to Oswatitsch’a (1957) review for the subtle connexions among all ‘area rules’. 
The equivalence rule may also be applied to the drag problem; but Berndt (1956) pointed 
out that, in the case of a straight‘trailing edge, it is applicable to drag correlation only if 
the tail sections are cylindrical. Cf. $5.1 below. 
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1968.) An extension of the formulation to wings of unit-order aspect ratio was 
made by Spreiter & Stahara (1971), who considered a triangular wing carrying 
a body with lift. 

Implicit in the cited works is the assumption of a flow model consisting of two 
distinct regions: an inner region governed by a linear transonic equation, the 
same as that in the slender-body theory (Munk 1924; Jones 1946; Ward 1949), 
and an outer nonlinear region which is axisymmetric. The axisymmetric assump- 
tion may be justified on the basis of the multipole expansion for the far field of an 
irrotational flow, applied to the cross-flow plane of a slender body. (See e.g. 
Batchelor 1967, pp. 117-124.) Accordingly, the effect produced by the line 
doublet and higher multipoles decays with distance from the axis much more 
rapidly than that of a line source. The outer flow may thus be expected to be 
dominated by an equivalent line source, and remains nearly axisymmetric. It 
should have been obvious that the stated rule cannot hold for lifting wings with 
an arbitrarily small thickness, as first noted by Hayes (1954). However, Hayes’s 
formulation is restricted to slender wings with zero camber, and is valid only if 
thickness dominates. (See Q 2.2.) 

An equivalence rule involving lift based on a line source and a line doublet 
has been given in earlier work of ours (Cheng & Hafez 1972a, b) .  Barnwell 
(1973) revealed quite clearly an error in our work, which results from omission 
of the source term associated with a nonlinear correction in the matching; this 
would lead to different scaling laws for the outer flow in the lift-dominated case. 
But Barnwell (1 973) precluded, among several important contributions, the 
logarithmic dependence on the expansion parameter for the inner solution. (See 
Q 2.4). The outer solution obtained cannot satisfy the condition prescribed at the 
far boundary. Although far from being correct, Barnwell’s analysis does contain 
one significant element. Namely, there is a nonlinear lift contribution to the 
equivalent source. In  the present paper, the problem is given a thorough and 
systematic treatment, with regard to the matching and scaling in particular. 
The most significant theoretical point of this new development is perhaps the 
uncovering of the contribution of several second-order nonlinear corrections to 
the inner solution (not completely accounted for by the classical transonic small- 
disturbance theory), which produce a far-reaching influence in the outer flow, 
unsuspected in all previous work (to the best of our knowledge). 

The material presented here is drawn largely from unpublished work (Cheng 
& Hafez 1 9 7 3 ~ ) ;  an outline of the analysis has been sketched in a greatly 
condensed note (Cheng & Hafez 1973b). This paper presents the full theory, 
adding several important interpretations and simplifications, The formulation 
of the inner problem has also been partly rearranged and expanded to improve 
clarity. 

The local strengths of line doublet and line source defining the outer flow are, 
respectively, P(x)/,o,U and UdS,(x)/dx. P ( x )  is the local lift force (integrated over 
the wing upstream of the 2 station); and S,(x) is the cross-sectional area of an 
equivalent body corresponding to the line source, also dependent on the lift 
distribution. The principal result of the rather lengthy analysis to follow can be 
compressed into a single equation. This expresses the nonlinear lift contribution 
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to the equivalent area S,(x) - X,(x) in terms of dF/dx and two double integrals 
involving streamwise and cross-stream velocity jumps [u] and [v], 

E(x)  may be identified with the cross-flow kinetic energy, comparable to Prandtl’s 
induced drag. The result in question is 

E is the ratio of the inner to the outer lateral scale. This may be compared with its 
dimensionless form arrived at  in (5.3). 

The novel features of the nonlinear corrections uncovered here could have 
been anticipated from elementary gas dynamics. For, any departure from the 
sonic condition should result in an increase in the stream tube area from that at  
the throat, hence in the cross-sectional area of the equivalent body. But this 
fails to explain the increase in regions where the flows are not exactly sonic. The 
results may, nevertheless, be understood in terms familiar in fluid mechanics. 
Thus, additional space in 3 2 is devoted to a delineation of such effects, where the 
basic assumptions of the present work and the strategy of the expansion pro- 
cedure are also explained. The full basis of the theory is presented in § 3, where 
the inner solution and its non-uniformity are treated. The outer problem is 
formulated in 0 4, where matching establishes the equivalence rule. The conse- 
quences and implications of the theory are discussed in 5 5. 

The departure from the classical area rule will generally increase with increas- 
ing lift and aspect ratio, and will also increase with decreasing thickness and 
leading-edge sweep. In  the design range of transonic transport aircraft, the need 
for compensating the lift effect proves to be significant indeed (Cheng & Hafez 
1973~8, table 1) .  This paper will not treat aspects of design applications which 
belong to a separate study. 

2. Assumptions and general remarks 
2.1, The inviscid model and equations 

A steady inviscid flow with a uniform free stream is considered. The slightly per- 
turbed flow in this case can be described by a velocity potential corresponding to 
a uniform entropy, subject to a relative error proportional to the square of the 
pressure jump across a shock. To render the results more explicit, the basic 
theory will be developed principally for a nearly planar wing, of which the thick- 
ness and the surface lift distributions are prescribed. (The mean wing surface can 
be determined from the lift distribution. See $3.2, (3.18b).) 

To avoid problems of non-uniformity arising from edge singularities, both lift 
and thickness distributions will be assumed to vanish sufficiently smoothly 

11-2 
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FICURE 1. Illustration of the Cartesian and cylindrical co-ordinates. The shaded area 
represents a typical cross-section of the wing. The smooth lift distribution assumed in the 
paper requires a dropped leading edge, as shown. 

at  the trailing edges and at the leading edges. This restriction has also the benefit 
of avoiding leading-edge separation and local shock waves, making the solution 
much more easily realizable.? 

Viscous boundary layers and wakes are important aspects of transonic flow 
not treated in this paper. Ryzhov (1965) showed that the inviscid description of 
the three-dimensional far field breaks down at  N, = 1.  But the effect of this far- 
field non-uniformity on the flow region analysed turns out to  be exceedingly 
weak at  Reynolds numbers in the practical range (Szaniawski 1968). 

In  the subsequent analysis, x, y and z denote Cartesian co-ordinates, with the 
axis pointing downstream, and the z axis in the lift direction. Alternatively, y and 
z may be replaced by the cylindrical polar co-ordinates r and w ,  r denoting the 
distance from the x axis and w the azimuthal angle (figure 1). The lift of the entire 
wing surface upstream of the station x will be denoted by P*(x). Often used also 
are the symbols b, 1 and X,*(x), which represent the half-span, a length in the wind 
direction, and the local cross-sectional area cut by a plane transverse to the x axis, 
respectively. The lift and thickness distributions, as well as the leading-edge 
contour of the planform, are assumed to be so smooth that the length scales 
characterizing the axial and transverse field gradients in the vicinity of the wing 
are no less than 1 and b, respectively. The subsequent work will also require that 
the derivatives of P*(x) and S*(x) be continuous. The types of admissible plan- 
form are illustrated in figure 2. 

The basic partial differential equation governing the perturbation (velocity) 
potential #, written in Cartesian variables for the present purpose, is 

+cubic terms (2.1) 
7 A slight leading-edge bluntness is admissable in the theory. 
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FIGURE 2. Three types of idealized planforms, to which the present theory is applicable : 
(a) Coneorde, (b)  swept, (c) oblique. The result holds as long as the body width is small 
compared with the wing span. The body accompanying the skew wing of sketch (c) is not 
shown. (See Jones 1971.) 

(cf. Lighthill 1954, pp. 361, 458). U and M ,  are the undisturbed flow speed and 
Mach number, respectively; subscripts x, y and x signify partial derivatives. The 
pressure p can be computed from the perturbation velocity potential via the 
Bernoulli relation 

(2.2) 
For simplicity, the specific heat ratio y will be assumed constant throughout the 
entire development. Since it appears in (2.1) only through the variation of the 
speed of sound, the principal nonlinear result obtained is applicable also to a more 
general gas, y being interpreted as 1 + [p~ , -~ ( (a~p /8p~) , ] , .  

If one writes the surface of the wing as z = Z(x, y), the impermeability require- 
ment on either side of the surface is 

(p/pm)-1’7 = 1 - (y- l)U,2[Uq5,+*(Vq5)2]. 

The same equation applies to the trailing vortex sheet (or any stream surface) 
and relates the geometry of the sheet to the velocity field in its vicinity. (The 
latter equation implies a continuous upwash across the sheet only in the linear 
case.) The pressure difference across a trailing vortex sheet is required to vanish. 
Except in the vicinity of the trailing vortex sheet and an afterbody, the perturba- 
tion potential is required to vanish at  points far from the wing. 

The analysis will involve developments in two ranges of the transverse radius 
r = (y2+z2)*, In  the first, corresponding to the inner region r = O(b) ,  the basic 
solution is governed by the linear transonic equation 

9Wl+ q5zz = 0. 
This will be referred to as the Jones (1946) equation. The successive approxima- 
tions involve nonlinear as well as non-transonic corrections (cf. (2.1)). The second 
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range of r corresponds to the outer (nonlinear) region; its precise order depends 
on the lift, and will be brought out in the course of the analysis (fi 2.3). Unlike most 
earlier theories of the transonic equivalence rule based on the slender-body 
approximation, the ratio b/l  will not be assumed to be small. (A more precise 
requirement on the range of b/l is given in $2.3.1) 

2.2. Importance of nonlinear corrections 
The degree of asymmetry in the flow far from the body is primarily controlled 
by the lift in the form of a line doublet, as is apparent from the multipole expan- 
sion cited in fi 1. There is, as mentioned earlier, a lift control of the outer flow of 
equal importance in the form of a line source. The following discussion will make 
evident that this additional equivalent source arises from second-order nonlinear 
corrections to the Jones (1946) solution. The discussion will stipulate that the 
Jones solution and its higher approximations are applicable in the vicinity of the 
wing. 

Compressibility corrections. The terms written out on the right of (2. l), 

represent the second-order compressibility corrections to the velocity divergence, 
and hence may be interpreted as a distributed source in the irrotational flow next 
to the body. Far enough from the wing (or the x axis), this distributed source, if 
integrable, should produce an effect equivalent to that of a line source, the 
strength of which is determined by the sum of the distributed source in the plane 
of constant x (of unit depth). This line source does not vanish with the wing 
thickness as long as lift persists, because the velocity squares contributing to the 
source lack the skew symmetry with respect to x .  At sufficiently high lift, the 

, source strength produced in this manner may even be greater than that corre- 
sponding to the geometrical cross-sectional area X,(x). 

The two quadratic terms a($; + $:)/ax in (2.1) signify (twice) the rate of change 
of cross-flow kinetic energy, not accounted for in the classical transonic small- 
disturbance theory. Interestingly these terms correspond to the higher-order 
corrections treated by Van Dyke (1951) and Lighthill (1954) for supersonic flows 
past slender bodies of revolution, although their effect in that context is far less 
important. Significantly, these source-like terms give rise to a non-vanishing 
volume flux, producing an afterbody effect. Whereas the linear and nonlinear 
corrections to the inner solution will be determined unambiguously from the 
analysis in 93, the contribution of a($;+@)/ax in (2.1) to (the strength of) the 
equivalent line source may be expressed in terms of the rate of the total cross- 
flow kinetic energy without complicated analysis. Their contribution yields, 
accordingly, a total volume flux proportional to the vortex drag, corresponding 
to an equivalent afterbody with a cross-sectional area 

SF(o0) = 2M2,(vortex drag)/pm U2. (2.4) 
t For comparison of experiment with solutions based on Jones’s equation, see e.g. Lock 

(1964). 
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Correction to inner boundary conditions. The foregoing delineation has not taken 
into account the nonlinear corrections at  the inner boundary, which produce a 
comparable but opposite effect. To determine this additional equivalent source, 
one may evaluate the jump in upwash $a across the reference plane z = 0, which 
is compatible with the impermeability condition (2.3), and (2.1), on both sides 
of the stream surface. We shall adopt the symbols [ ] and () to represent, respec- 
tively, the difference and the mean of values at  the top and at  the bottom of the 
surface. Application of (2.3) to both sides of the wing, taking the difference in $s 
across the wing, transferring the jump to the reference plane, and, finally, 
making use of (2.1) to eliminate [$=I, lead t o  

Integration on both sides of (2.5) with respect to y over the inner boundary gives 
an equivalent line source of a magnitude comparable to that arising from the 
compressibility correction examined earlier. Further integration over the entire 
x axis yields a total volume flux 

11 [$,I d x d y  = US,*(co) - M2, (inviscid drag)/p, U. (2.6) 

The inviscid drag is the sum of the drag due to the thickness and the drag due to 
lift. 

The contribution of the thickness drag to the volume-flux balance cannot be 
too important, since M2,($,) [Z], in (2.5) is small compared with the linear term 
U[Z] , .  Therefore, the significant contribution of the inviscid drag in (2.6) comes 
primarily from the drag due to lift. 

Resultant equivalent afterbody. Prior t o  and during the drag rise, the inviscid 
drag due to lift is contributed mainly by the vortex drag. In  fact, so long as the 
inner flow region is not dominated by the thickness and can be kept shock-free, 
the drag associated with the shock loss in the outer flow is small compared with 
the vortex drag, as the subsequent study may confirm. Therefore, (2.4) and 
(2.6) may combine to yield a net volume flux resulting from the second-order 
corrections, giving an equivalent afterbody with a cross-sectional area (in physi- 
cal variables) 

Accordingly, a stream tube will enlarge its cross-section slightly after passing 
over a lifting wing, in the manner illustrated in figure 3. This and other properties 
of the source of the equivalent body will be substantiated later by the full theory 
in @3 and 4. 

The existence of an equivalent afterbody due to lift would not appear too 
surprising if one were to stipulate that the trailing vortex sheet lies flat in the 
plane z = 0. For such a model, any transverse motion in the ‘Trefftz plane’ 
would (according to Bernoulli’s relation) make the pressure there, and hence the 
density, lower than that upstream. (Note that N, + 0.) Thus a stream tube 

Sz(00) = S,*(co) +K$(vortex drag)/p, U2. (2.7) 
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FIGURE 3. An afterbody effect produced by the lift. A stream tube enclosing an aircraft at  
transonic speed gains cross-sectional area by an amount proportional to the vortex drag. 
The widths of the cross-section and the trailing vortex sheet downstream are slightly 
exaggerated. 

taken to be large enough to enclose the aircraft and its wake, but small enough to 
remain in the inner region (cf. figure 3) should have a larger cross-section far 
downstream (to conserve mass), as in the case with an afterbody. However, 
this interpretation is somewhat misleading (as pointed out by W. R. Sears and 
R. Seebass). Owing to the departure of the trailing vortex sheet from x = 0, there 
is a non-vanishing negative axial perturbation velocity far downstream (Sears 
1974). Therefore, the pressure and density in question may not be lower than 
their corresponding upstream values. But the component of the mas,s flux 
intensity pu computed from the Bernoulli equation is 

Thus, in the transonic regime, the flux p u  far downstream is less than upstream, 
since Nm is close to unity and 4, U-l is as small as 4: U-2 there. Hence, the cross- 
sectional area of a stream tube (cut by the transverse plane) must be larger far 
downstream than upstream, in agreement with (2.7), irrespective of the sign of 
(1  -1M;). In  fact, from (2.8) one can recover S:(co) of (2.7). 

We note that, in Hayes (1954)) the cross-flow kinetic energy terms were 
omitted, on thegrounds that wave systems tend to approach the planar, rendering 
their effects non-cumulative. This argument overlooks the contribution of these 
terms to the equivalent source that determines the initial data for the wave 
system. In addition, Hayes's (1954, equation (24)) would be inconsistent, were 
lift to dominate. 

2.3. Basic parameters and expansion procedures 
Basic to the present study are the parameters 
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Sza and FgaX are the maximum cross-sectional area and the maximum of the 
lateral force up to x, F*(z),  respectively. Obviously, T and a may be taken as 
the wing thickness and incidence parameters , respectively, characterizing typical 
flow angles in the inner region. The h controls the leading-edge sweepback angle 
and may be referred to as the sweep parameter. It may be noted that A is com- 
parable with the classical planform aspect ratio (= 4b2/(wing area)), where it is 
finite, but differs significantly from it if it is large ! 

Excluding complicated planforms,? the flow of a gas with a fixed y over a 
wing may be characterized by four parameters: T, a, M2, and A. A n  alternative 
group of four is e.g. 7h3, ah5, (MZ, - 1) h2 and 7h. The problem analysed thus in- 
volves multiple asymptotic limits. To render the subsequent formulation more 
definite, these parameters will be replaced by a third group E ,  a,, K and I?*, where 

g, = ( y +  I ) + M ~ ~  lnEIBahb-+, } (2.10)$ K = (Mz-1)h2~-2  and I?* 3 8(y+l)-1h-1h-211n€l-1. 

E is the ratio of transverse length scales for the inner and the outer regions already 
mentioned, to be chosen according to either of the values 

E = [ ( y + 1 ) ~ 2 , ~ ~ 3 ] ) ,  El1nsl-i = ( y + 1 ) ~ 2 , a h 3 ,  ( 2 . 1 1 ~ ~  b )  

depending on the range of IT* (cf. $3.1). The basis for the equivalence rule is the 
existence of a distinct inner region small compared with the outer region. This 
requires a small E .  

The basic formation will be developed for fixed, non-vanishing (T*, I?*, and 
K in the single limit 

€ 3 0 .  (2.12) 

Cases involving less restricted a;, I?, and K ,  including unbounded a,, will be 
examined thereafter. The cases of unbounded r* and K correspond to slender 
wings and linear outer flows, respectively. They obey different scaling laws, and 
are excluded from the following analysis. In  passing, we note that a non-vanishing 
or unbounded E implies a high aspect-ratio planform with negligible sweep. 
It corresponds to the three-dimensional problem formulated by Cole (1969). 
(Also see Miles 1959, table 1.) 

Obviously, K is a generalized transonic parameter. The first form of E ,  (2.11 a )  
and the corresponding K were in fact introduced by Drougge (1959), in his 
experimental study of the equivalence rule applied to twin bodies, and also by 
Berndt (1952,1955) and Spreiter & Stahara (1971), with h replaced by the aspect 
ratio. The parameters controlling the lift effects on the outer nonlinear flow are CT, 
and rs, In particular, the nonlinear lift contributions to the equivalence source 
will be controlled by 0% and-cr: I?*. a% I?* characterizes the part of the nonlinear 
correction not accounted for by the classical transonic small-disturbance equa- 
tion, and is suggested readily by comparing the afterbody effect of (2.7) with 
Sgm, The factor ( y  + 1) MZ, in the definitions (2.10) and (2.11) is retained merely 

Yawed wings of extremely high aspect ratio will not be treated in this paper. 
$ For all practical purposes, a finite r* may be taken to mean a finite and non- 

vanishing A .  
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to conform with the traditional practice (Spreiter & Alksne 1958; Ashley & 
Landahl 1965; Cole 1969).t However, the inclusion of the factors (?+I )  in 
(2.10) and (2.11) represents a definite gain; it eliminates the specific-heat ratio 
from the reduced outer equations. One may note in passing that r* is essentially 
the ratio of the two alternative values of e given by (2.11); a t  r* = 1, the two 
6’s become identical. 

2.4. Logarithm in the inner expansion 
Expansions in powers of E, with the logarithm of 8 appearing in the coefficients, 
are familiar from classical work on flow past slender bodies (Broderick 1949; 
Lighthill 1954). A similar logarithm, often associated with ‘switchback’ terms, 
also arises in the low Reynolds number expansion. (See e.g. Van Dyke 1964, 
Lagerstrom & Casten 1972). When terms like em llnslP are allowed in the inner 
expansion, question as to determinacy of the exponent p arises, since the inner 
system would admit additive (homogeneous) solutions satisfying the Jones 
equation for an arbitrary p ,  The correct choices for the powers of lne are, of 
course, to be established by the final demonstration of the matched (asymptotic) 
expansions to the inner and outer problems. Nevertheless, a rule for inferring 
the logarithmic factor, without a priori knowledge of the full outer solution, is 
highly desirable, inasmuch as it simplifies the task of constructing the inner 
approximation and the analysis of its non-uniformity. 

The rule in question stipulates that, with a uniform free stream, the outer 
solution is completely determined by the strength of the source, doublet and other 
singularities at  the x axis. Thus, the part of the outer solution that is regular at  
the axis signifies a feedback from the far field that is controlled by the singulari- 
ties mentioned. Hence, the order of terms emllnelP in the regular part, if they 
appear, cannot be lower than those in the singular part of the outer solution. This 
rule, in turn, imposes a requirement on the harmonic functions b,(x) rn exp (inw) 
admissible to the inner expansion; in particular, on the logarithmic dependence 
of bn(x) on e. To meet this requirement, we shall express the outer limit of the 
inner expansion in terms of the outer variable 7 = er, and eliminate those regular 
terms having coefficients proportional to IlnelP with p greater than those found 
in the singular part of the solution. For example, if the particular integral is 

the proper particular solution consistent with the rule is 
f ( x )  ln2 r = f(x) [In2 7 - 2 In eln 7 + lnze], 

f ( x ) [  - 2 In E In 7 + 111271 = f ( x )  [ln2 r - ln2 €1.2 

3. The inner problem 
In  this section, we shall determine the solution to the Jones equation and 

some of its higher-order approximations. Of importance to the subsequent work 
is their behaviour far from the x axis, where the inner solution ceases to be valid. 

t The factor ( y  + 1)  M2, has been simplified from 2( I + $(y - 1) Ma,) NL. 
1 It also proves convenient first to eliminate all such complementary solutions from the 

particular integral. (See $83.1 and 3.2.) 
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An examination of the non-uniformity of these and still-higher approximations 
will then disclose the important parameters and proper scalings for the construc- 
tion of the outer solution. To reveal more clearly the genesis of the single-limit 
expansion and its parameters noted in $2.3,  we shall first examine a heuristic 
development of the inner solution based on an expansion in powers of 7,  a and 
(1-H:). 

3.1. A heuristic development 
In  terms of the reference length 1, and the parameters a and 7, the top and bottom 
wing surfaces will be assumed representable in a dimensionless form 

211 = aZ, -t 72,. ( 3 . 1 ~ ~ )  

2, and 2, are (differentiable) functions of x/L and y /b ,  independent of a, 7,  h 
and M,. Similarly, the differential pressure across the wing is assumed to be of 

[PI = P m  U 2 a W I .  (3 .1b )  the form 

[PI is a function of x/Z and y / b ,  independent of a, 7, h and M,. We introduce the 
dimensionless inner variables 

2 = x/l, fj = y/b, 2 E zlb, (3 .2a )  

as well 5s the complex variable 5 and its conjugate 
- 

(3 .2b)  

To simplify typesetting work, the tildes will be omitted. For present purposes, 
(2.1) may be written, for 'p 3 #/Ub,  as 

'Pg = k(cp~),+kr(cps(Pg)~++B(M2,- 1)h2cp,+ -.a, (3.3) 
with k = Q(y + l) 2M: h3, I' = S(y + l)-l hd2. (3 .4 )  

.* 5 = y+iz, y = 8-m. 

The jumps in the upwash and in the potential across the reference plane (z  = 0) ,  
consistent with the assumed forms of wing surface and lift distribution (of. (3 .1)  
and (2.5)) ,  are 

[$',I = 7[z112+a2kr[(P01 (zo)s+ &(Y+ 1) a2kr2(YoyZo)y+ ...? 

[Z , ]  = 22, = [Z]/7Z, [(pol = - [PJdX. 

(3 .5)  
[TI = a[cpol+ (3 .6)  

S- m 
where 

The successive terms not written out are proportional to a3 and m. Similarly, 
we have a(Zo)s = (acppz) + . . . . (3.6a) 

These equations apply also to the trailing vortex sheet. Inspection of (3.3)-(3.6) 
suggests a form of $/( Ub)  in ascending powers of a, T and (1 - H:): 

$/( Ub)  = cp = avo + 7(p1+ a21ccp2 + a2kr$., + a2kr2$; + . . . (3 .7)  

The coefficients rpo, c p l ,  etc., are expected to be independent of a, 7, (1 - M2,) h2, 

as well as of k and I?, except for a possible weak dependence through the logarithm 
of a scale factor (resulting from matching). Terms not written out in (3 .7 ) ,  as 
well as those omitted from (3.3)-(3.6a), belong to the third, and higher powers of 



172 H .  K .  Cheng and M .  M .  Hafez 

the product of a, r and IM2, - I\*. Equation (3.3) yields others governing yo, 'pl, 

rp2, etc. : ( 'po)5s = 0, (3.8a) 

('P1)cf = ((Pz)cf - (cpt,), = ($2155. - ('poc'pog), = ($&g = 0. ( 3 . 8 b )  
The inner boundary conditions for the coefficients 'po, 'pl, . . . ,$: follow from (3.5) 
and (3.6). 

Although they will not affect the principal results, the far-field behaviour of 
terms belonging to the third- and the fourth-power groups mentioned are essential 
in securing a firm basis for the asymptotic theory to follow. For later reference, we 
list terms of the third-power group in full: 

a 3 k 2 y 3  + rak'ph + a( I - M:) ~ 2 ~ ;  + + a 3 ~ 3 $ ;  + a 3 ~ 3 $ ;  

+ a3k2r4$; + arkrpp)+ a7r2t+q). (3.9) 
$[ and $p) result from the remainder of (3.6). Parts of P3, $;, and $; are con- 
tributed by cubic terms omitted from (3.3) or (2.1).? Typical among the fourth- 
power group are 

a4k3y4 + ra2k2y; + r2ky; + - 1) yi  + a2k7(M% - 1) 4-l'pp) 
+a*~c3r+*+a4k3r2*;+  ... . (3.10) 

Typical of the partial differential equations governing terms of third- and fourth- 
power groups are 

................................................. I 

A fuller description of the system is given in Cheng & Hafez (1973a, appendix 
1.1). 

With the procedure indicated in 0 2.4, concerning Ilnsl, asymptotic behaviour 
of ' po ,  yl, etc. a t  large r = "1 may be inferred quite readily from the partial 
differential equations and the inner boundary conditions. In particular, their 
r dependence may be written as 

(3.12) I yo = r-l, 'pl = lnr+lne = ln(w), 
'p2 = ln2r-ln2e = 2lne1n(er)+ln2(~r), 
$2 = 2-1('p3,+harmonic = lnr+lnc = ln(sr), 
rp3 = rlnsln2(er), 
y4 = r21n2eln ( B Y ) ,  

'p; = rln(sr), 
'pp" = r21n2(sr). 

t The cubic terms not written out in (2.1) are 

B(r - 1 ) ~ ~ Y # ~ + # ; ) # ~ X - - w -  1)a,l$x"l+*(y- 1)M2,)#:+#:+#:l+~V#.V(V#)e.  
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The order of magnitude signs have been omitted for convenience. In  particular, 
the successive terms in (3.7), 

arp,,; 7y1, u2krp2, a2kr$,;  a3k2rp3, a( 1 - N:) h2& a(ak)s y4, ~ ~ k c p ; ,  ( 3 . 1 3 ~ )  

may now be arranged into the following form at large r, after division by T, and 
replacing functions of x and w by unity for simplicity: 

} (3.13b) 
e(Tk)tc*K-&q-l;  lnq;  $*ln7,$*r,lnq; 

(7k)* e-l d~-& 7 In 7, e ( ~ k ) - b *  K-$ K7 In 7 ; 7ke-20-$72 In 7, ~ k e - ~  q2 In 7. 

For convenience, we have made the substitution 

K = llnsl, 7 = er. (3.14) 

This form of 9/(7Ub) clearly exhibits the appropriate grouping for the terms and 
the parameters CT*, r* and K of (2.10). It reveals at once the solution’s parametric 
structure, and its relation to the range of validity of the inner solution. It is 
apparent from (3.136) that, for finite a,, l?* and K, the expansion (3.7) will 
break down in the range of r = O [ ( ~ k ) - i ] .  For if one takes 6 = (7k)*, the four suc- 
cessive groups of terms in (2.13b) become either O(1) or O(K-*) as 7 = er ap- 
proaches unit order. On the other hand, for an unbounded g*, the inner expansion 
breaks down in another range corresponding to an r = O(e-l), now with 

€ = CT*(Tk)*; 

for the successive groups of terms in (3.13b) will then become either O(B$) or 
O ( ~ % K - * )  as T,I = e’r approaches order unity.t 

The foregoing examination has not only revealed the important outer scale 
in two ranges of the lift parameter c*, but also suggests that the outer as well as 
the inner problems can be more systematically analysed by an expansion in small 
6 for the two ranges of CT*, with fixed I? and K. This is done below. 

3.2. The inner solution 

We shall formulate the inner problem on the basis of an expansion 

(3.15) I $/(aUb) = ‘91 + qJI I  + e2ym + E3rpIV + * , 
E = [( 1 + 1) M%7h3]$, 

in the single limit E -+ 0, with fixed, non-vanishing parameters 

0;; = ( y +  l)*M,ah%-*Ilne]~, l?* = 8(y+ 1)-1h-2 ne 
‘I I - ” }  ( 3 . 1 5 ~ )  

The cases involving less restricted CT,, I?, and K ,  including unbounded c*, will 
be studied subsequently. As in the classical slender-body theory (cf. $2.4), log- 
arithmic dependence of rpII, rpIII, etc. on e, in the form of powers of K-1 = JlnsJ-l, 
is allowed, but under no circumstances will [lnel-l be treated as a negligible 
quantity. The expansion (3.15) satisfying (3.3) may be expressed in terms of 

K = (Mz, - 1) h26-2. 

t It also follows from (3.13b) that the terms representing the feedback (of. 32.4) to be 
allowed in TI, ye, etc. cannot have powers of In 8 higher than those shown in each of (3.12). 
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yo, yl, etc. of (3 .7 ) ,  which satisfy individual sets of partial differential equations 
and inner boundary conditions (cf. ( 3 . 8 ) ,  (3 .5 )  and ( 3 . 6 ) ) .  With 

c, = c*llne/-i, I' = l?*lInel, (3.16) 
one finds 'PI = 'Po, 'PI1 = ~ ~ 1 y l + ~ ~ l ( ~ 2 + r $ z + r 2 ~ ~ ) ,  (3 .17a ,b)  

( 3 . 1 7 ~ )  
yIII = &@Y, + rfi, + r2fi; + r3~; + r4g) + + r$p+ r2fip) + $ K ~ ; ,  
91v = 9 4  + 8-'0-1 + fly1 + &'Kvr 

+ & V , K ~ ~ ) +  r[+<($a+ r ~ ; )  + ...I + ... . (3 .17d)  
v1lI and yIv, identified with the third- and fourth-power groups of (3.9)and (3.10), 
will be needed later only for an unambiguous estimate of their orders of magni- 
tudes a t  large r .  Equations (3 .15 ) ,  with (3 .17) ,  are none other than the heuristic 
expansion (3 .7)  recast in terms of gl, K ,  I? and e.1- 

The solutions yo and y,, corresponding to the purely lifting and thickness prob- 
lems in the slender-body theory, are (see e.g. Adams & Sears 1953) 

(3.18) 

a, and a2 are the spanwise ordinates (divided by the half-span) of the two outer- 
most edges of the wing and trailing vortex sheet. Of importance is their behaviour 
at large r = 16) : 

'pa N (277)-1F(~)r-~sinw+(27r)-~m~,r-~sin2w, (3.18 a)  
y1 N (27r)-1S&r)1n(er)+b,(x)- (27r)-1(ijSc)'r-1cosw, (3 .19a)  

(3.20) 1 where 3~ = 1: [yOl dy, m32(x) =- 1: [y01 Ydy, 8~ = d ~ , / d x ,  

&(x) = [Z,l@4, j&(x) = 1; [ZlIYdY. 1:: 
P(x)  and S,(z) signify the lift and the cross-sectional area made dimensionless by 
their respective maximum values (cf. definitions of a and r, $ 2 . 3 ) .  Introduction 
of the h e  in (3.19) and ( 3 . 1 9 ~ )  isin accord with the procedure statedin $2.4. We 
note in passing that 2, and [yo] are related through ( 3 . 6 a ) ,  i.e. 

The solution to the second of (3.8b), which is real and single-valued, with con- 
tinuous rpz and ay2/az across the wing, consistent with the boundary conditions 
(3.5) and (3 .6) ,  is obtained explicitly: 



Transonic equivalence rule 176 

Y a, 
Here, X(%Y) = -(n)-"'po(x,Y)lsP.V.S a, [CpO(X,Yl)l, [ F y + l n  I n - Y I ]  dY1 

results from a source distribution introduced over the wing plane to  make a'p2/az 
continuous. Intermediate steps of the derivation, given in Cheng & Hafez 
(1973a, appendix 1.2), are omitted for brevity. Terms proportional to llnsI2 and 
llnsl among the integration constants have been introduced above so that, in 
the variable 7 = er, the regular and singular terms possess the same logarithmic 
dependence on e (cf. 0 2.4). Equation (3.21) yields the crucial behaviour for 'p2 a t  
large r 

(p2 N (Sn2)-1(F~),[21n2(er)+cos2w]+(2n2)-1z Fzllnel +n ~ ( x , y ) d y  ln(er) 

+b2(z)l  Ins] +(4n2)-1- Pz(m32)z(21n~+ 1) -2n y2xdy r-lcosw 

(3 .21~)  + (4n2)-1 [Fz(m32),]z r-l[2 In (er) cos w - cos 3w] + . . . . 
The second and the fourth terms signify an equivalent line source and a weaker 
equivalent line doublet in the far field, which result from nonlinear corrections to 
the inner solution. 

Similar, and perhaps even more significant, is the source-like contribution of 
$2 associated with the cross-flow kinetic energy, unaccounted for by the tran- 
sonic small-disturbance theory (cf. $2.2). The third of (3.8b) governing $2 has an 
obvious particular integral 

which is equivalent to the second of the three particular integrals in Lighthill 
(1954, p. 463) cited earlier. But this solution gives an upwash discontinuity in the 
wing plane, which does not agree with that imposed by (3.5), i.e. 

7 1: I 
dx " [  14' 1 

$2 = Q(Cp8)m 

W 2 P I  = [Cpolr azo/ax or ['Pols ( a c P o P ) *  
The required solution is 

a 2  
$2 = Hd), - Re (2n)-1/ul 'Po zo1n [€(Y1- 611 &I,+ 6 2 ( 4 .  (3.22) 

This appears to be different from the corresponding result of Cheng & Hafez 
(1973a, b) ,  because there the contribution of [a$/az] enters through 'pl instead of 
$2. The solution yields a line source and a (weaker) line doublet 

d aa a 2  
$2 w (2n)- l~ ' (x)  In (cr) + b",(x) - (2n)-1- [cp ] - 2,ydyr-l cos w ,  (3 .22~)  dxIa ,  ax2 

a* a 2  1 
with E'(4 = -Ia1 [ ' P o l 5 3  ZO(fY = - ,~~[p, l ,ur 'Pol~l~n l Y - - Y 1 1 ~ Y ~ Y l ?  (3.23) 

to be identified with the rate of change of the cross-flow kinetic energy in 4 5.2. 

the last term in (3.51 
Finally, $; is a harmonic function satisfying the jump condition specified by 
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$-; N (16a)-l(y+ l )~~~[cpo] ,Zo~~r - l cosw.  ( 3 . 2 4 ~ )  

For the purpose of analysing the non-uniformity of the expansion (3.15), it  
suffices to infer the order of magnitude of the functions ‘ps, cpi, etc. from the par- 
ticular integrals of their governing partial differential equations, making use 
of the foregoing asymptotic forms of yo, cpl, . . ., $-;, and following the procedure 
in selecting the lne terms (cf. $2.4). The results obtained for the third-order 
coefficients, omitting the azimuthal dependence as well as the order of magnitude 
signs, are (cf. (3.9)) 

(3.25) I 
1 

cp3 = rln2(er), y: = r ln2(er), y: = rln(w), 
7,h3 = rln2 (er), $; = r--1, $: = r-1, $! = r--1, 

$fv) = r-I, $-;I = r-1. 

Typical among the fourth-order coefficients are (cf. (3.10)) 

(3.26) 
y4 = r21n2eIn(er), cp; = r21neln2(sr), ‘p; = r21n2(er), 

= r21n(er), cpp“) = r2lneIn(er), $p4 = r21neln2(er), 
$1 = r21n2(er), ... . 

Note that the skew-symmetry of the third-order solutions with respect to z does 
not permit terms of order unity in the coefficients of (3.25); but a feedback in the 
form of upwash b3(x) rexp ( iw)  must be allowed, which can be absorbed under any 
of 9 3 ,  y;, cp; and $8. 

Instead of (3.15), an alternative expansion is possible: 

$/(aUb) = cp;+~’y;I$~”cp”I+~’’(p;V+ ..., e’/lne(-i = ( y +  l)M2h3a. (3.27) 

The prime on e indicates the second definition for e given in (2.11 b) .  The functions 
y;, cpiI, etc., may again be evaluated in terms of cpo, yl, etc. via 

pi = yo, viI = ~z’cp11, = cp;v = G~(PIV,  (3 -274  

with e’ replacing e in the definitions of Q*, and K (cf. ( 3 . 1 5 ~ )  or (2.10)). For 
finite and non-vanishing Q,, r* and K ,  the two expansions (3.27) and (3.15) are 
equivalent and, in fact, identical at  Q* = 1. But (3.27) yields valid results for an 
unbounded Q*, for which (3.15) breaks down (at least formally). 

3.3. The non-uniformity 

The expansion of 4 in B (3.15) may now be written at large T, using results obtained 
for yo, yl, cp2, etc., and writing K for llnsl and q for er: 

q5/ (~Ub)  = Q* cp/(mllnel*) N ( 2 n ) - l ~ ~ - ~ ~ * ~ ( ~ ) q - ~ s i n w + O ( € q - ~ ) ) ~  
+ (2n)-1{8&) In y + b,(x) + +~2*[r,b“,(4 + b2(z)]  
+ (32n)--1 a$ ~ - - 1 ( F z ) ~  (2 In2 7 + cos 2w) + O[e( 1 + c:) ~ j - ~ ] ) ~ ~  

+ O ( K - * ~ (  1 + r,) q In2 7 + K-*G, q (In2 7 + K In q)XII 
+ o{[@* + 1 +K(I + + g: r,(i + r,)] ( q 2 l n q  + 1)) IV‘ (3.28) 
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SL is .the strength of a line source corresponding to the wing 

The Roman numeral subscripts I, PI ,  I11 and IV  serve to identify rpI, yII, yIII and 
yIv, respectively. The terms In2 7 and In 7 inside the brackets, with subscripts I11 
and IV, stand for terms O(ln27) and O(lnT), as well as O(1). The latter allows 
for the feedback terms mentioned in $2.4. As 7 = er approaches order unity 
with fixed r*, I?* and K ,  the even Roman numeral groups corresponding to qII 
and e3yrv tend to unit order, whereas the odd numeral groups corresponding to 
rpI and c2yIlr tend to O(K-*), i.e. the order of Ilnsl-4. An examination of terms 
belonging to  still higher orders confirms this trend. Hence, the non-uniform region 
for the inner expansion (3.15) is unambiguously identified with er = O(1) + 0. 
The region of validity for the far-field description of the inner solution (3.28) is 
therefore established at 

E 7 -g 1 with 7 = er = [ ( ~ + l ) N $ ~ h 3 ] Q r ,  (3.29) 

as long as r*, I?* and K are finite. 
The explicit dependence of K ,  I?* and g* in (3.28) shows clearly that the latter’s 

non-uniformity remains unchanged, even if R, re and a* vanish with E .  Thus, 
the analysis includes the non-lifting problem (r* = 0). But this expansion in e is 
inappropriate for an unbounded o;, , as is apparent from (3.28). 

For unbounded c*, the 6‘ expansion of (3 .27)  is applicable, and yields the 
asymptotic result a t  large r 

q5/(r+ 1)M2,a2h3 llne’l Ub N (277)-1{~-@(~) (q’)-lsinw+O(e’(7’)2)}I 

x (2n)-1{8~In7’+8-1(I?, bU2+b2)+bla~2+(32n)-1~-1(F~)z(21n2~+cos2u) 

+ OLE( I + crg2) ( 7 ’ ) - 1 1 } ~ ~  + O{K-~( 1 + r *) 7’ ln27’ + K-)y’(a;21n27’ + K In 7’)},,, 

+ O((7’21n27’ + 1) [ 1 + r~~ K(  1 + az4) + r,( 1 + (3 .30)  

where s; = s;a*2, q’ iz s‘r. (3 .30a)  

E’ has been substituted for e in the definitions of K, c*, I?* and K.  The result cor- 
responds, term by term, to the E expansion a t  large r (3.28). In fact, the two 
become identical for cr* = 1, as noted earlier. As 7’ = e’r approaches order unity, 
the even and odd Roman numeral groups of (3.31) are seen to tend to O(1) and 
O ( K - ~ )  respectively, for bounded K ,  and us1, including vanishing K and I?+, 
and a* -+ co. The non-uniform region in this case is therefore identified with 
e’r = O( 1) + 0 ;  and the region of validity for the far-field description of the inner 
E’ expansions (3 .30)  is 

A 

E’ Q 7 < 1 with 7’ = e’r and e‘11nd1-Q = (y+I)M%ah3.  (3.31)f 

t The estimates for the third-order group given in (3.28) and (3.30) differ slightly from 
our previous result in that terms independent of K-* found in Cheng & Hafez (1973a, b )  are 
absent. As a result sz$III in our earlier work becomes to O(1) instead of O(K-4) when 7 or 1’ 
approaches O( 1). The estimates given for $; and fd (which is @(wv, in this paper) were also 
in error, but of little consequence. 

I2 F L M  72 
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4. The nonlinear outer region 
4. I. Three nonlinear domains 

The results (3.28) and (3.30) describe the inner solution in its outer limit for 
bounded as well as unbounded a;, . They indicate that the field far from the axis 
is determined principally by a line doublet and a line source of strengths, subject 
to a correction of O ( E ) ,  

Do@) = a,IlnE]-4F(x) = a,P(x), 

respectively. The relative importance of the lift and thickness in determining 
Do(x) and ti’&), and hence the outer flow, is seen to be controlled by 

c$ = ( y +  1)M2,Ilnsl ~ t ~ A 3 7 - 1 ,  

for given r* and K .  Three domains of lift control on the outer flow are apparent: 
(I) thickness-dominated, (T+ 1; (11) intermediate, a, = O(1); (111) lift- 
dominated, cr* 9 1. The first domain corresponds to that of the classical tran- 
sonic area rule, although departure from the axisymmetry represented by the 
line doublet distribution Do(%) is not always negligibly small. The third domain 
allows for wings with zero thickness. The lift control on the equivalent source 
SL is generally characterized by cr;. The part in SL representing a departure from 
the classical transonic small-disturbance theory is characterized by (T$ I?* = ct I?. 

1)  will 
not be treated fully in this paper. But it may be pointed out that the proper lift- 
control parameter in this case is a2, I?, rather than cr*, and that the present theory 
may still be applied to slender wings, so long as c1 and g! I? are finite. 

The case of an unbounded I?* corresponding to a slender wing ( A  

4.2. Two sets of variables 

It is apparent from the analysis in $3 .3  that a proper formulation of the outer 
problem for an unrestricted c*, with finite I?* and K ,  will require two sets of 
variables : 

x , q  =- m , w ;  @ = $ / (Tub) ;  E = [(y+ 1 ) M % ~ h ~ ] i ;  (4.2a) 

(4.2b) 

As before, x and r are dimensionless variables based on the length scales I and b, 
respectively. Obviously, the first set ( 4 . 2 ~ )  applies to domains I and 11, cor- 
responding to finite c*, and the second set (4 .2b )  to domains I11 and also 11, 
corresponding to finite azl. It is useful to note that q’ and CD‘ may be recovered 
formally from 7 and @ through 

x,lj)’ = e’r, w ;  CD’ = $/[aZA3(y+ I)M2,IlndIbU]; e’1Ins’I-4 = ( y+  I ) M $ a P .  

q’ = (T* 7, cp’ = qc;, (4.3) 

with cr* to be evaluated according to (3.15a), or (2.10), replacing E with E ’ .  The 
formulation in the fist variable set will be considered first. 
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4.3. Reduced equations for Jinite r* 
In  terms of x, 7, w and CD, the governing partial differential equation (2 .1 )  for 
domains I and I1 reduces, in the limit e -+ 0, to a form familiar in the transonic 
small-disturbance theory (Guderley 1962; Ashley & Landau 1965; Cole 1969): 

-(K+<D>,)cb,,+r-l(r<D,),+r-2(D,, = 0, K = (M: - l ) / ( y+qM2,7h ,  (4.4) 

with a remainder of order e2 and e21n &* (i.e. 7h3 and rh). To the same degree of 
approximation, the local pressure coefficient C, E 2(p -pm)/pm U2 and the local 
Mach number M may be related to <Dz as 

(4.5) 

Obviously (4.4) is elliptic in the subsonic and hyperbolic in the supersonic region. 
In  the far field, it  admits a uniform free stream (excluding x -+ co, 7 = O( 1)): 

@ + O  as x 2 + r 2 + c o .  (4.6) 

In  approaching the x axis, (4.4) admits an expansion for 7 < 1, using Cartesian 
tensor notation: 

@ - o"i)(x) Zj(o) q-l+ eC&) [2Z,(w) Zj(w) - 8 4  q-, + C,(x) In 7 + C,(x) 

+,,is a 1 ~ 3 ) ~ )  Ic z In2 7 - " B ~ ) D E )  16 - D E ) B ~ ) I  cos 2w - +Dg)og)sin 2w + . , .I + . . . . 
(4.7) 

i and j  take on the alternate values 2 and 3 (referring to the y and x axes, respec- 
tively); Z,(w) = cosw and Z3(w) = sinw. Terms not written out in (4.7) are of 
O(7 In27); they include a feedback in the upwash and sidewash E&) Zj(w) 7. The 
E in the second terms is introduced in anticipation of the weak quadrupole arising 
from the inner expansion (cf. (3.28) and (3.18a)). 

4.4. Matching with inner solution 
Equation (4.7) permits matching with the outer limit of the inner expansion 
(3.28), which is valid for 8 < 7 < 1. With 'pI and 'pII written more fully for the 
present purpose, (3.28) becomes 

$ / ( r U b )  = CD - (277)-1X~(x)Inq+(2~)-1D0(~)7-1sinw+/30(x) 
+ ~(27i9-l [Bl(x) 7-l cosw + CT* Iln~l-*rn,,r-~sin 2w] + (Dnon, (4.8) 

where Po(.> = b I ( 4  + wdr*62(4  + b,(x)l, 

( l -~IIneI)P ' rn~,  dx 

Qn,, is the nonhomogeneous part of qII + c%pPIII + e33'pIv representing the non- 
linear and non-transonic corrections in (3.28) : 

Onon N (64+)-1r$ I lneI -1(~~) , (2 ln2~+cos2w)+ ... . ( 4 . 8 ~ )  
12-2 
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Terms not written out in the homogeneous part of (4.8) are of order c2~12, c27-’, 
c2 and q. Terms not written out in (4.8a) for the nonhomogeneous part are of order 
qln2q and c .  Matching (4.7) with (4.8) determines the strengths of the source, 
doublet and quadrupole for the outer solution, C,, D(3) and Cij : 

C,(X) = (27r)-lS;(x), D y X )  = €(27r)--lD1(X), 
D@)(x) = (27r)-1o;,Ilncl-tF(x) = (27r)-1D0(x), 1 (4.9) 

C, = o except C3, = (%)-I v,lln €1-4 m3,(x). 

With C,(x) = /3(x), it  gives 
C1(x)+~Ej(x)Zj(w)r+ ... 

as an outer boundary condition for the inner problem of $/(r Ub) .  Having matched 
the multipole terms in both solutions, the matching of terms in anon, including 
those not written out in (4.8a), with their counterparts in (4.7) follows auto- 
matically. Exceptions are terms in Qn,, proportional to E2lnd?, or s2r, which 
can be matched only with the higher-order terms associated with the remainder 
of the transonic small-perturbation equation (4.4). 

The Qnon of ( 4 . 8 ~ )  arises mainly from nonlinear corrections to  the Jones 
equation but is expressible in terms of the doublet strength. Therefore, the 
important boundary condition on the axis, i.e. (4.7) or (4.8), is specified com- 
pletely by the strengths of the line source and line doublet, and to a lesser 
extent, by the line quadrupole, related to the thickness and lift distributions 
through (4.9). The regular part of the homogeneous solution C,(x) +E,(x) Zj(w) 7 
+ . . . signifies the feedback from the nonlinear far field, and remains unknown 
until the boundary-value problem with (4.6) is solved. With the strengths of the 
multipoles in (4.7) determined, (4.4), (4.6) and (4.7) or (4.8) are the three basic 
equations defining the boundary-value problem of the outer region, subject to 
errors of the order €2 and e2 In el?*. 

The existence of solutions to the outer problem so formulated can be tested for 
small CT*, for which @ can be expanded in powers of c*. The leading term in this 
case is the axisymmetric solution familiar in the transonic small-disturbance 
theory. The part of the correction linear in c* has been computed on the basis of 
a finite-difference approximation for certain combinations of Sl(x) and F(x) ,  
using a line-relaxation method (Cheng & Hafez 1 9 7 3 ~ ) .  

4.5. Equations for unbounded c* 
The formulation of the outer problem in terms of x, q’, w and a‘ belonging to the 
second variable set can be carried out in a similar manner. The outer expansion 
of the inner solution to be matchedis, of course, that based on d, (3.30). The three 
basic equations corresponding to (4.4), (4.6) and (4.8) in the limit e‘ -+ 0 for finite 
K ,  I?* and (~gl (i.e. domains I1 and 111) are as follows: 

(4.10) 

(4.11) 

I - (K’ + (DL) + (?’)-I (g’@;~),, + (g’)-Z @;@ = 0, 
K‘ = ( M ~ - 1 ) / ( y + 1 ) 2 M 4 m ~ ~ ~ h 4 ( I n ~ ’ I ,  

@’ --f 0 as x2+qr2 -+ co (7’ + O(l) ) ,  
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(6’ < 7 < 1). 
(4.12) 

Si, B1, Do and are fl;, B1, Po and Qnon after division by o$, with 8’ replacing 
e. Equations (4.10)-(4.12) remain valid for all h i t e  u;l, including c* --f co, with 
remainders of the order d2 and e’21ne’r, (i.e. a2h6 and a2h4). 

The system of outer equations based on the e expansion and that based on the 
e’ expansion are completely equivalent, unless c* = 0 or a;* = 0. In  fact, one 
system is transformable to the other via In e’ + In (e’/e) +Ins.? As long as c* is 
neither identically zero nor infinite, either one of the system suffices. 

w N (2n)-l&(x) lny’+ (2n)-ll1ne’1-+~(x) (y’)-lsinw+/?o(x) 
+e’(2n)-1[B1(x) (y’)-lcosw+ Ilns’l-tm3,(q’)-2sin 2w1 

A 

4.6. Shock, vorticity and far JieM 
Presumably, the smoothness assumptions on the distributions of thickness and 
lift and on the planform contour may rule out any shock wave on the wing result- 
ing from a local geometrical irregularity. But shocks may appear in the outer 
flow when a part of it becomes supersonic ( K  + as > 0). On account of the scale 
difference in the two regions, such a shock will approach a plane surface (parallel 
to surfaces of constant x) in the inner region. The inner solution may admit a 
shockintheformofa discontinuityinthexderivativeofPo(x)andEi(x)in(4.8),or 
of C,(x) and Ej(x) in (4.7). This will affect e2rpIII and e3’pIV of the inner solution 
(3.1~9, the determination of which will then require use of the Rankine-Hugoniot 
relation. But this shock discontinuity will not change the order of terms of order 
e2’pIII and 8qIV given in (3.28), nor the corresponding terms in (3.30). 

The conservation laws governing a gasdynamic discontinuity x = xD(q, w )  
can be written for the outer region, subject to a relative error of O(e2) and 
O(e21neI’,), as 

[$$I {(K + 4 s )  - ([9nI2 + rl-2c$L12)/[$,12) = 0, (4.13) 

[+J: [+,J : [+J = - i : ax~ /a7 :  a q a w .  (4.14) 

[ ] and ( ) signify the jump and the arithmetical mean, respectively. We also 
demand that the pressure must be higher on the downstream side, to conform with 
the second law. For [$,I p 0, (4.13) yields the shock polar, and (4.14) says that 
the velocity vector changes in a direction normal to the shock, tantamount to the 
requirement of continuity in $, i.e. 

MI = 0. (4.14a) 

These are the direct results of applying mass and tangential-momentum conserva- 
tions across the shock under the small-disturbance approximation. The conserva- 
tion equations for the normal-momentum and energy fluxes are fulfilled, with 
relative error O(s2, e21neI’,), when (4.13) and (4.14) are satisfied. 

It is easy to arrange (4.4) and the irrotationality condition into suitable diver- 
gence forms, of which the weak solutions admit jumps satisfying (4.13) and 

t The conversion would give rise to  some additional functions of x involving powers of 
In ( E ’ / E )  in (4.8) or (4.12), which may however be absorbed into the undetermined function 
PO(4 or Pow. 
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(4.14) (Cole 1969; Murman & Cole 1971; Garabedian & Korn 1971). These con- 
servation laws, to be sure, include those for slip surfaces and trailing vortex 
sheets: 

[c6,1 = (axD/aq)-l = (axD/aU)-l = 0. 

The vorticity and the entropy rise omitted from the analysis cause a relative 
error of order 

(7h)2 or (a2h3lne')2, i.e. e4r$Ilne12 or ~'411ne'1~I'$. 

The error incurred by the irrotational assumption is therefore negligible. 
Under the requirement 0 -+ 0 of (4.6), (4.4) admits three types of behaviour 

in the far field, depending on K .  One may note that, for the slightly supersonic 
case K > 0, even though K +  fDZ approaches K in the far field, (4.4) cannot be 
uniformly linearized, because of the cumulative nonlinear distortion of Mach 
waves over a long distance, as in sonic-boom theories (Whitham 1956; Seebass 
1969; Hayes 1971; Cheng & Hafez 1 9 7 3 ~ ) .  

5. Transonic equivalence rule 
It follows from the foregoing formulation that the nonlinear outer flow is 

determined principally by a line source of strength X:(x), a line doublet of strength 
D,(x), and, to a much lesser degree, by an additional line doublet and a line quad- 
rupole (cf. (4.1) ; (4.8)). The formulation succeeds, therefore, in dissociating the 
body geometrical details from the nonlinear mixed-flow problem. 

5. I. Equivalence rule : cowelated outer $ow8 
Assuming that the three basic equations (4.4), (4.6), (4.7) or (48), along with the 
jump conditions (4.13) and (4.14), yield a unique solution, flows having the same 
distributions SL(x) and D,(x), with the same transonic parameter K ,  are equiva- 
lent. The nonlinear structure of the outer regions (including the shock and the 
sonic boundary, as well as the characteristic surfaces), when correlated in the 
variables x, q ,  w and <D, are the same. In  particular, the correlated fields of 
pressure and Mach number for the Same AS'&) and D,(x) are given by 

C,/(7h), ( M 2  - l)/e2 = f(x/Z, w / b ,  w ;  K ) ,  (5.1) 
where 6 = [ (y+  l )M;~h~]* .  

The equivalence rule so stated does not require the same parameters (T* and I'*, 
nor the same specific-heat ratio y and the same wing geometry. It is therefore 
more powerful than the classical transonic similitude. Corresponding to (5.1) is 
the inviscid drag rise associated with shock waves in the outer flow, D,, in the form 

D,/(p, U2b272MZ) = f ( K ) .  (5.2) 
This follows from the relation between D, and the entropy increase behind 
shocks, not elaborated here; but it may also readily be inferred from the form of 
pressure drag based on the inner solution. Alternatively, (5.1) and (5.2) can be 
written in terms of the second variable set, with B and K replaced by e' and K' 
(cf. (4.2b)), and with T~ in (5.2) replaced by T"*. This is appropriate for a; 9 I .  
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In either system, the order of the relative error in the correlations is no greater 
than the larger of E and 6'. 

From the two alternative scales of Ow, it  is possible to infer that 0, is compar- 
able with, or greater than, the vortex drag 0, only if a = O(T), and that the drag 
associated with the shock loss in the inner region is far less than the greater of 0, 
and 0,. For a high-aspect-ratio wing with a moderate sweep, the locally super- 
critical component flow (unaccounted for here) may support spanwise-running 
shocks and a drag far greater than D,, depending on the ratio a/.. The present 
theory may still be applied to the control of 0, in this case, but is useful only 
if the local component flow remains shock-free. 

5.2. Lift contribution to the line Source 
The application of the equivalence rule requires the same axial lift distribution 
F(x)  or P'(x); but, to keep S;(x) invariant, the cross-sectionaI area S,(x) cannot 
remain the same, unless the lift parameter a$ is negligibly small. The expression 
for the equivalent line source in (4.1) can be arranged into a more interesting 
form : 

d 
ax SL(x) = -Se(x)  

with (5.4) 

The following identities have been used : 

These are valid for the leading-edge behaviour of [cpO], assumed (cf. 92.1). 
(Equation (5.6a) was called to our attention by E. Ehlers, A. Chang and P. E. 
Rubbert of the Boeing Company.) 

With (5.5), E(z) signises the kinetic energy in the cross-flow plane; and it gives 
a non-vanishing cross-sectional area to the equivalent body at x + CO, identi- 
fiable with that of (2.7), 32.2. Interestingly, T ( x )  assumes the same form as E(x),  
with the differential pressure [cpo(x, y)], replacing the differential side wash 
[cpo(x, y)Iu. It can be shown, via a Fourier representation of [cp],, that T(x)  i8 non- 
negative, as is E(x).  Therefore, (5.3) yields the inequality 

That is, the equivalent body corresponding to &(x) has a cross-sectional area 
greater than that of the geometrical cross-section. Obviously, a greater reduction 

Se(x)  2 Sc(x) .  (5.7) 
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in body cross-sectional area is needed to compensate for the increase due to lift, 
if an outer flow corresponding to a chosen &(x) and D,(x) is to be maintained. 
But, for a given axial lift distribution P(x)  under fixed a, and I?+, there exists 
a least value for (S, - S,) at each x. With regard to aircraft design application, it 
is observed that the range of cr: may extend t o  order unity (Cheng & Hafez 
1973 a, table l ) ,  and that significant nonlinear lift effects may be found even with 
rather small g;. This is so because the axial length scale characterizing the lift 
distribution is considerably shorter than that of the whole craft, which makes 
d(S, - S,)/dx much larger. 

For wings with bilateral symmetry, those terms proportional to E and 6' in 
(4.8) and (4.12) vanish identically, and the equivalence rule, in this case, becomes 
as accurate as the partial differential equation itself. 

5.3. Flow symmetry, wall interference and sonic boom 
Since the lift contributes to both SL(x) and D,(x), the line doublet alone can never 
dominate the nonlinear field, even for a wing without thickness (Q, -+ m). In 
fact, according to (4.7), (4.9) and (4.12), the equivalent line source is asymptotic- 
ally stronger than the line doublet as well as (Dnon, by a factor of Ilnelh or 
Ilne'lS, for any cr*. The outer flow structure would therefore approach axi- 
symmetry in the strict asymptotic limit Iln dl -4 -+ 0, even with IT* + co. 

It is apparent from above that the smaller of be-l and b(e')-l is the important 
transverse length scale for transonic wind-tunnel analyses. The distances between 
walls must be far greater than this scale to treat the wall effect as a (weak) cor- 
rection. When wall distances are comparable with this scale, a full nonlinear 
analysis of (4.4) and (4.8), or (4.10) and (4.12), with an appropriate outer bound- 
ary condition, is required. In  either case, the relative importance of the lift effects 
is controlled by CT*, and the effects can be treated in the context of a line doublet 
and a line source. Similar comment applies to sonic-boom analyses at  low super- 
sonic speed. In  that case, the nonlinear lift effect through s : (~ )  may contribute 
a signature no weaker than that of the supersonic doublet in the linear theory 
(Seebass 1969; Hayes 1971). 

In this respect, one must recall a significant part of the equivalence source, 
$a$r,E(x) in (5.3), unaccounted for by classical transonic small-disturbance 
theory. Thus analyses generated from the latter framework, either numerically 
or asymptotically, may not describe correctly the outer nonlinear structure 
(hence the drag rise, the wall-interference effects and the far-field signatures), 
at  least in the domains considered here.t 

6. Conclusion 
The transonic flow around a planar wing of which the leading-edge sweep 

angles are not small has been analysed. The flow has an inner region described by 
the Jones (1946) theory in the leading order, and a larger nonlinear outer 

j- For three-dimensional flow-field computations based on the transonic small-distur- 
bance theory, see Bailey & Steger (1973), Newman & Klunker (1972). 
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region determined principally by a line source and a line doublet. The ratio 
of the transverse length scales for the two regions is E or E‘ (cf. $2. l), whichever is 
greater. The analysis has been carried out as an asymptotic theory in the limit 
E -+ 0 (and E’ 3 0) for a finite K (transonic range) and a finite (non-slender 
wing), but an unrestricted lift-control parameter 0; cc ar-8h-8, The theory 
confirms the aforementioned structure, and determines explicitly the strengths 
of the line doublet and line source Q ( x )  and Si(x) (cf. (5.3)). The equivalence rule 
established assures that correlated outer flows with the same Do(%) and Si(x) 
will be essentially the same. The result on &(x) confirms that the equivalent body 
corresponding to Xi(x) has an increased cross-sectional area and a non-vanishing 
afterbody effect, depending on the vortex drag.? 

The discussions in $ 5  made evident the importance of the lift control in the 
maintenance of a shock-free supercritical outer flow. It was brought out that, 
where a, is not small, methods of analysis based on the classical transonic small- 
disturbance theory, unless implemented properly, are inadequate. 

The present theory, based on a small E ,  could be regarded as a development 
complementing the classical three-dimensional transonic wing formulation (Miles 
1959; Guderley 1962). Cole’s (1969) review contains the most complete formula- 
tion under a set of requirements equivalent to 

E - ~  = O(l) ,  K = O(l) ,  v* = 0(1) and I?* = 0(d), 

to which the transonic equivalence rule does not apply. On the other hand, the 
basic difference between the present work and the analyses of Hayes (1954,1966), 
Euvrard (1968) and Spreiter & Stahara (1971) is controlled primarily by 

(Tcc artn; .  
In  the cited works, the assumption a = o(7) was implicit, which makes the de- 
parture from the area rule relatively unimportant, if not altogether negligible. 
Similar comment applies to the slender-body theory of Oswatitsch & Keune 
(1954), for which a, T and h are all of the same order, so that ( T ~  and a:l? are as 
small as r2 and thus negligible (cf. footnote in $4.1). 

From the viewpoint of singular perturbation methods, the result is interesting 
in that it is the second-order correction to the inner (Jones) solution that gives 
rise to the important nonlinear lift control on the outer flow. Of particular interest 
is a crucial part of the line source contributed by terms that dominate neither the 
inner nor the outer differential equations. Its importance is a consequence of the 
rapid decay of the Jones (doublet) solution with respect to r ,  which is overtaken 
a t  large r by the non-decaying, source-like, second-order corrections (established 
in $3.3).  

The present analysis is limited to a planar wing, with rather severe restrictions 
on the smoothness in the lift and thickness distributions, as well as in its planform. 
Our principal result on A:(%), (5.3) in particular, is derived on the assumption of a 
‘ shock-free entry ’ at the leading edge without flow separation, with a correspond- 
ing smoothness assumption a t  the trailing edge. For a wing of extremely high 

t The inner boundary condition for the outer solution is highly nonlinear not only on 
account of the lift dependence in 8, but because of the presence of BnOn; of. (4.8), (4.8a). 
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aspect ratio, the present formulation must be supplemented with a region next to 
the wing; the present inner solution then describes the exterior of a lifting line. 
The formulation as such permits asymptotic analyses of a high-aspect-ratio 
wing with moderate sweep, involving a locally supercritical component flow. 
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